

High Resolution Geodetic Measurements of Co-seismic Fault-zone Deformation for PFDHA

Chris Milliner, Postdoc, Jet Propulsion Laboratory, California Institute of Technology Rui Chen, California Geological Survey

Introduction

- **Aim**: Use high-resolution geodetic data that can resolve near-field surface deformation to improve PFDHA models.
- Motivation: Measuring distributed faulting is highly challenging in the field (largely due to lack of cultural features that span the fault zone in perpendicular manner).
- Method: Use optical and SAR pixel tracking from multiple M_w > 7 surface rupturing earthquakes to measure distribution of strain across fault.

Multiple easrthquakes

Event	Year	Mw	Length (km)	# strain profiles	Mechanism
Landers	1992	7.3	80	~1000	SS
Hector Mine	1999	7.1	50	~700	SS
EMC	2010	7.2	120	500-1500	SS, normal
Balochistan	2013	7.7	240	30	SS
Napa	2014	6.1	30	30-150	SS
Kumamoto	2016	7.1	40	40	SS, normal
Kaikoura	2017	7.8	120	120-600	SS, thrust
Canterbury	2011	Mw 6.2			SS,
Norcia, Amatrice					SS, normal
China x ??? Gareth F.?					??
Papau New Guinea					thrust
Palu	2018	7.5	150	70-500	SS

Methods: Optical & SAR pixel tracking

Correlate optical radiometric data (visible EM)

Correlate amplitude of radar backscatter (microwave EM) > 3 look directions → 3D motion

Results – Optical pixel tracking – 2D

Results – Optical pixel tracking – 3D

- El-mayor Cucapah, M_w 7.2, 2010, Mexico
- Oblique: strike-slip, normal
- Rupture length: 120 km

2010 Mw 7.2 El-Mayor Cucapah

Leprince et al. (2015)

© 2019. All rights reserved

Palu, Indonesia, Mw 7.5

- 150 km surface rupture
- Sentinel 2 data

Sentinel 2 – 10 m resolution

Radar pixel offsets – 3D

2017 Mw 7.8 Kaikoura, NZ (?) – 3D SAR

- Highly complex event, > 12 major faults.
- Underlying mega-thrust thought to participate, and perhaps primarily control rupture propagation and explain the large rupture complexity.
- Due to uniqueness of rupture, debate whether to include this in PFDHA?

Multiple Sentinel 1A (ESA) radar scenes, C-band (3 cm wavelength)

dz

How to calc. probabilities using geodetic data? Key assumption

111

- We use strain, not displacement on indiv. fractures.
- Due to geodetic imagery averaging spectral properties over an area + corr. window
 → cant resolve individual fractures, the velocity field is almost continuous.
- Therefore product we'll provide is the amount of shear strain a structure will experience over a given length scale == total displacement.

Johnson et al. (1994)

Belt of Shear

$$\lambda(\varepsilon \geq \varepsilon_o)_{xyz} = \alpha(m) P[sr \neq 0 \mid m] \int_r P[\varepsilon > \varepsilon_{inelastic} \mid r, z] P[\varepsilon \geq \varepsilon_o \mid r, \varepsilon_{inelastic}] dr$$

Results - profiles

Vector Field Showing Ground
Deformation at the Kickapoo Stepover

- Draw stacked profiles perpendicular to fault (~200 m width) → fauzlt parallel motion
- 2. Calculate gradient → shear strain

Results - Probability calculation

4e-3 = yield strength of granite → conservative inelastic strain

$$\lambda(\varepsilon \geq \varepsilon_o)_{xyz} = \alpha(m) P[sr \neq 0 \mid m]$$

 $\int_{-\infty}^{\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{2\pi} \int_{-$

Results – Hazard curve

Scenario event:

- Assuming fault slip rate = 1 mm/yr
- Magnitude = 7.3
- Hazard of strain for 2 distances from main rupture.
- Another key assumption:
 - Location of primary rupture has been identified (with confidence from trenching) uncertainty on location not considered

Conclusions

- **Aim**: outline a standard method for high-res geodetic data to constrain PFDHA models.
- Results: Geodetic data allows us to gather thousands of strain profiles.
 - Potential to do PFDHA for SS, normal + thrust

Assumptions& Limitations:

- We quantify strain, not displacement on individual fractures.
- Can't discern elastic vs inelastic, we have to assume a threshold value that exceeds yield strength, or can let user decide the minimum strain to exceed.
- Data of varying resolution + noise → varying sensitivities to strain.

Future work

Going forward:

- Most data already gathered
- 2. More eq's (1-4)
- 3. Include Kaikoura?
- 4. Separate oblique faulting events?
 - 1. Decreases number of data per faulting style
- Asses whether near-surface geology, fault geometry, sediment thickness etc... has an effect → this could reduce epistemic uncertainty.

What we need (data):

- 2018 M_w 7.5 Palu, Indonesia Planet labs (free)
- 2013 M_w 7.7, Balochistan, Pakistan Landsat (free)
- 2014 M_w 6.1 Napa, US lidar, optical (pre-existing)

Timeline:

- 1. Will verify PFDHA code with Rui Chen visit Sacramento next month.
- 2. Process more data (<2 months).
- Publish, < 1 yr timeframe a method detailing how to use geodetic data for PFDHA + present results from multiple earthquakes.